Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification
نویسندگان
چکیده
Classifier performance, particularly of instance-based learners such as k-nearest neighbors, is affected by the presence of noisy data. Noise filters are traditionally employed to remove these corrupted data and improve the classification performance. However, their efficacy depends on the properties of the data, which can be analyzed by what are known as data complexity measures. This paper studies the relation between the complexity metrics of a dataset and the efficacy of several noise filters to improve the performance of the nearest neighbor classifier. A methodology is proposed to extract a rule set based on data complexity measures that enables one to predict in advance whether the use of noise filters will be statistically profitable. The results obtained show that noise filtering efficacy is to a great extent dependent on the characteristics of the data analyzed by the measures. The validation process carried out shows that the final rule set provided is fairly accurate in predicting the efficacy of noise filters before their application and it produces an improvement with respect to the indiscriminate usage of noise filters. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملCircular Mean Filtering For Textures Noise Reduction
In this paper, a special preprocessing operations (filter) is proposed to decrease the effects of noise of textures. This filter using average of circular neighbor points (Cmean) to reduce noise effect. Comparing this filter with other average filters such as square mean filter and square median filter indicates that it provides more noise reduction and increases the classification accuracy...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملA Noise Filtering Algorithm for Event-Based Asynchronous Change Detection Image Sensors on TrueNorth and Its Implementation on TrueNorth
Asynchronous event-based sensors, or "silicon retinae," are a new class of vision sensors inspired by biological vision systems. The output of these sensors often contains a significant number of noise events along with the signal. Filtering these noise events is a common preprocessing step before using the data for tasks such as tracking and classification. This paper presents a novel spiking ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 46 شماره
صفحات -
تاریخ انتشار 2013